Science

Most Distant Mini-Halo Discovered in Galaxy Cluster 10 Billion Light-Years Away

Astronomers have discovered the most distant mini-halo ever seen—10 billion light-years away—revealing that galaxy clusters were energized early in cosmic history.

Most Distant Mini-Halo Discovered in Galaxy Cluster 10 Billion Light-Years Away

detected a faint radio signal around the cluster using 100,000+ antennas across 8 countries

Astronomers have detected a vast cloud of energetic particles — a ‘' — around one of the most distant galaxy clusters, according to a new study. This mini-halo lies so far away that its light takes about 10 billion years to reach Earth, making it the most distant mini-halo ever discovered to date and doubling the previous distance record. The finding suggests that even in the very , massive galaxy clusters were already filled with high-energy particles. The international research team was co-led by Julie Hlavacek-Larrondo and Roland Timmerman.

Faint radio glow reveals mini-halo

According to the study, the team used the Low Frequency Array (LOFAR) radio telescope to study the distant cluster SpARCS1049. LOFAR – a network of over 100,000 antennas spread across eight European countries – captured an extremely faint, diffuse radio signal surrounding the cluster. This glow stretches over a million light-years, revealing a giant “mini-halo” of high-energy particles and magnetic fields.

Analysis showed the emission filled the space between galaxies rather than coming from any single galaxy. The cluster's light took 10 billion years to reach , doubling the distance record for any known mini-halo. Co-leader of the reasearch Julie Hlavacek-Larrondo describes it as a vast cosmic ocean,in which entire galaxy clusters are constantly immersed in high-energy particles.

Origins of the mini-halo

Two main theories exist for the mini-halo's origin. One possibility is that powerful jets from supermassive in the cluster's galaxies have injected the energetic particles into space. However, it is unclear how such particles could travel far from the galaxy centers without losing their energy.

Another idea is that collisions within the cluster's hot gas create the particles. In this scenario, charged particles in the intracluster plasma crash at near-light speeds, producing the observed high-energy particles. These observations imply that massive clusters were already filled with energetic particles very early on. Future instruments like the Square Kilometre Array (SKA) will find even fainter mini-halos, helping scientists study the roles of magnetic fields and in cluster evolution.

Source

Click to rate this post!
[Total: 0 Average: 0]

Related Articles

Leave a Reply

Your email address will not be published. Required fields are marked *

Back to top button